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Abstract: Quantifying among others the soil's physical properties is essential for the assessment of the 

diverse soil environmental functions including water balance of soils and pore structure, water erosion and 

various soil hydraulic properties. The mid-infrared (MIR) spectroscopy is a useful technique to predict soil 

attributes with high accuracy, efficiency and low cost. In this study, we examined the ability of our MIR soil 

spectral library in predicting the clay, silt, sand content of salt affected Hungarian soils. This research is part 

of a project to establish a MIR spectral library in the frame of the Hungarian Soil Information and Mentoring 

System (SIMS) survey. Salt affected soils type data was extracted from the spectral library then 

transformation of spectral reflectance values to absorbance values were performed. Moving average filtering 

method was applied to absorbance spectra before performing principal components analysis. To determine 

outlier samples and to select the proper samples for model calibration, Mahalanobis distance-based outlier 

detection method and Kennard-Stone Sampling selection method were applied on the principal component 

scores. Spectral and reference soil data were combined and split into training and testing datasets. MIR 

prediction models were built for sand, clay, and silt content using Partial Least Square Regression (PLSR) 

method. Coefficient determination, root mean square error and ratio performance to deviation were used to 

assess the models performance. The prediction accuracies of calibration sets for soil physical texture were 

excellent while the validation results were slightly lower but still with a good level of prediction. 

Keywords: Kennard-Stone sampling, partial least square, Soil Information Monitoring System, Diffuse 

Reflectance Infrared Fourier Transform 

1. Introduction 

The soil surface layer's characteristics are important because they provide essential information for food 

production. Soil is a mixture of physical, chemical, mineralogical, and organic compounds, as well as water 

and air, and these properties have been degraded in many agricultural regions due to ineffective management 

[1]. Among the soil attributes, particle size distribution is an important soil property related to physical 

structure, and it is divided into three main fractions: clay (<0.002 mm), silt (0.002-0.02 mm), and sand (>0.02 

mm). Soil physical attributes are required for different disciplines' study such as forest ecosystem, general 

agricultural production and long-term soil use [2]. One of the most essential soil physical features for 

determining infiltration rate, irrigation, and drainage practices is physical soil texture. It has a big impact on 

soil hydraulic characteristics including water permeability, soil water retention [3] and solute dispersion in 

the soil profile. Soil texture is therefore important for  the environment, and land reclamation [4]. Soil texture 

also influences plant water uptake and the overall hydrological cycle [5], [6]. It has an impact on many 
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important soil attributes such as soil specific surface area and pore structure [7], [8]. On the other hand, 

convection attributable to upward water movement in reaction to evapotranspiration, diffusion due to a 

salinity gradient with depth, and limited drainage flow are the major causes of salt transfer to the soil surface 

[9]. Both soil water dynamics and salt accumulation phenomena are affected by physical soil texture. 

Furthermore, the relationship between some physical soil characteristics such as soil compaction, plasticity, 

consistency, mechanical resistance and air capacity are strongly correlated with soil particle size [10]. 

Additionally, soil mineral weathering rates, ion exchange and buffering capacity, and nitrogen and carbon 

sequestration are all affected by the relative content of particles within specific size ranges [11], [13]. Many 

soil processes, including pollutants and microbial activity, are governed by soil texture [14]. It has been used 

to aid in soil classification, management, and modeling of soil processes. 

Knowing and analyzing the texture of the soil is vital to understanding how well it functions are related to 

plants and other soil processes. Various approaches can be used to identify the physical texture of soil. The 

two most important traditional assessment methods for soil texture are, hydrometer and the sieve-pipette, 

both are granulometric measurements of particle size using gravitational-sedimentation techniques. These 

methods are disadvantageous since they are extremely time-consuming and inaccurate e.g. under-estimate or 

overestimation of clay [15]. In addition, H2O2, HCl, C6H5Na3O7 and NaHCO3 chemical compounds are 

necessary as pretreatment to remove soil organic matter, Fe oxides and carbonates from soil during measuring 

the soil physical texture. These compounds may generate toxic wastes that are environmentally harmful. 

Therefore, its application across large fields (e.g. soil survey activities and soil mapping) is impractical and 

expensive.  

In contrast to the wet chemistry approaches, infrared spectroscopy has emerged as a feasible option for time 

and cost-effective solution for soil properties determination such soil texture. It is a low-cost and non-

destructive method [16]. This approach is cheap, utilizes tiny subsamples and has the advantage that a single 

spectrum of soil sample integrates many attributes with highly precision [17], [18], do not require the use of 

chemical extracts that might harm the environment [19] and allows for the scanning of diverse soil types 

without samples dilution [20]. Fundamentally, soil infrared spectroscopy relies on the interplay of 

electromagnetic energy with matter to characterize samples' physical and biochemical composition. 

Fundamental molecular vibrations absorb electromagnetic radiation at specified wavelengths, resulting 

characteristic spectral fingerprints in mid-infrared (MIR) region (2.5 - 25 mm) which is sensitive to soils' 

organic and mineral components [14]. Several studies have shown that MIR across a wide range of soil types 

are more robust and provide accurate predictions of several soil properties such as clay and sand [21, 22, 23]. 

The reason for this is that the fundamental molecular vibrations of soil components that are absorbed at 

specific wavelengths of electromagnetic radiation occur in the absorbance MIR region. The MIR 

spectroscopy spectrum contains a high reflectivity, useful spectral features and gives greater information on 

soil attributes [24]. Various physical and chemical soil properties, including texture, have been detected using 

MIR spectroscopy [14], [25]. Nguyen [26] demonstrated Diffuse Reflectance Infrared Fourier Transform 

(DRIFT) MIR ability to distinguish diverse mineral components abundantly detected in Australian soils, such 

as kaolinite, quartz, carbonate, gibbsite, illite, and smectite minerals [27]. On the other hand, the soil science 

community has been recently working to create extensive soil mid-infrared spectral libraries on a national 

and global scale. Soil spectral libraries often contain significant amounts of soil samples that represent the 

diversity of soils in a given region. MIR spectral library has been shown to accurately estimate soil texture 

in addition to many soil attributes such as soil organic carbon, CEC, phosphorus and potassium content.  

Due to the scatter effects caused by structure result in overlapping absorption features, diffuse reflectance 

spectra in soil are non-specific. To extract absorption patterns and correlate spectra with soil properties, 

multivariate techniques are required. Linear regression approaches for soil applications include stepwise 

multiple linear regression (SMLR), principal component regression (PCR), and partial least squares 

regression (PLSR). Thus, generation of prediction models based on the appropriate calibration dataset and 

robust algorithms is required for the accurate estimation of soil physical texture. In this regard, the PLSR is 

a powerful technique compared to other algorithms as it is easy to compute and interpret. 

This study made use of data from the Hungarian MIR spectral library, which contained approximately 2200 

MIR spectra collected on soils from Hungarian Soil Information and Mentoring System (SIMS). This 

massive database held data on soil samples analyzed using the same standard laboratory methods. As a result, 

we were able to determine which soil properties could be accurately predicted by MIR spectroscopy for 

assessing soil functions. The aims of this study therefore were to: a) build multivariate statistical models for 
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soil texture physical properties using PLSR and b) test the predictive capacity of MIR spectral library for 

sand, clay, and silt content in salt-affected soils types of Hungary. 

2. Materials and Methods 

2.1. Dataset 

The soil samples spectral data utilized in this research were obtained from the MIR spectral library in 

Hungarian University of Agricultural and Life Sciences in Gödöllő which built based on the samples 

collected in frame of SIMS survey. The MIR spectral library database comprised measurements of about 

2200 soil samples representing 10 Hungarian counties and five soil types. Salt affected soils type dataset was 

extracted from the MIR spectral library which contained about 100 soil samples. 

2.2. Dataset preprocessing and outlier detection methods 

Preprocessing methods for spectral dataset were used to enhance the accuracy of quantitative soil texture 

analysis. The Salt affected soils type spectra dataset were transformed from reflectance to absorbance value 

using the equation: 

                                                                                 Absorbance = log (1/Reflectance)                                              (1) 

Absorbance spectra dataset were smoothed with a moving average window of 17 bands and Savitzky-Golay 

filtering methods to reduce and remove noise that represents random fluctuations in the signal. This noise 

may originate from the instrument or environmental laboratory conditions.  
Principal Component Analysis (PCA) was applied to reduce the dimensionality of the spectral dataset, 

improve computational efficiency and to compress the spectral information into a few variables (Figure 1). 
Outlier detection was checked and calculated on PCs of spectral dataset using Mahalanobis distance method. 

The purpose of this methods was to identify samples that deviate from the average population of spectra[28]. 

Based on standard arbitrary threshold methods, the samples with a Mahalanobis dissimilarity larger than one 

were considered outliers. 

2.3. Calibration sample selection and physical soil texture prediction models 

In order to develop the best MIR spectral models for soil texture as well as to define how many observations 

(samples) should be listed as calibration dataset, Kennard-Stone sampling (KSS) selection method [29] was 

applied (Figure 2).  

In terms of building soil texture models, salt affected soils processed dataset including reference soil data 

was split into training and testing datasets based on the KSS. Accordingly, 27 soil samples were selected for 

calibration dataset and the remaining samples were retained for the validation set (n = 63). In this study, MIR 

prediction models were built for sand, clay and silt content using PLSR [30] using calibration dataset as well 

as the highest number of principal components and oscorespls method [31]. 

Coefficient of determination (R2), root mean square error (RMSE) and ratio performance to deviation 

(RPD) were used to assess the model’s performance.  
 

                                                                                               𝑹𝟐 =
∑ (ŷ𝒊−ȳ𝒊  ) 𝟐 

𝑛

𝑖=1

∑ (𝑌𝒊−ȳ𝒊  ) 𝟐 
𝑛

𝑖=1

                                                 (2) 

 

                                                               𝑹𝑴𝑺𝑬 = √
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𝑛
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                                   (3) 

 

                                                                𝐑𝐏𝐃 =  𝒔𝒚/𝑹𝑴𝑺𝑬                                                                                (4) 
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ŷ indicates the spectral library's predicted value, while ȳ and y represent the observed value average and 

observed value of reference soil database respectively n represents the sample number where I is equivalent 

to 1, 2, …, while, 𝑠𝑦  the observed values' standard deviation. 

RStudio software [32] was used for spectral displaying, analysis and modelling processes using several 

packages, functions and operators. Models development were performed using the caret package interface 

[33] and PLSR function from pls package [34]. 

 
Figure 1. Principle component scores 

 
Figure 2. Kennard-stone sampling distributions 

3. Results and Discussion 

3.1. Mid-Infrared spectral signature 

Generally, the MIR absorbances were caused by fundamental molecular vibrations, which were characterized 

by clearly identified peaks related to either organic or mineral compounds. Soil samples MIR spectra of salt 

affected soil dataset extracted from spectral library are given in (Figure 3). The general shape and the position 

of the absorption features are determined by the physical-chemical composition of the soil samples.  Since 

the clay, silt and sand content refers to particle size classes that involves a wide range of mineral particles, 

the direct visual attribution of spectral features to these soil properties are limited. However, careful visual 

interpretation of the spectral data revealed that the spectral features of clay minerals were clear while the 

ones for quartz were less identifiable. For example, due to OH stretching, clays or aluminosilicates display 
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strong peaks around 3700 1/cm. Furthermore, the band about 1630 1/cm is usually assumed to be caused by 

water in the clay. The complex band at roughly 1048 1/cm may be due to clay mineral spectra, which is 

connected to the stretching vibrations of Si-O groups, similar finding were obtained by [35]. The hydroxyl 

stretching vibrations of kaolinite, smectite, and illite are thought to be responsible for the absorption bands 

amongst 3800 and 3600 (1/cm). More specifically, the absorption peak at 3620 (1/cm) might be due to clay 

minerals, a similar result was obtained by [26]. A sharp band at 798 1/cm with a shoulder around 779 1/cm 

prove the existence of quartz mixes [36]. According to Nguyen [26], weak spectra signatures near 1100–

1000 cm−1 can also related to quartz. In addition, the clear band ranging between 2562 - 2480 1/cm may 

assigned to the vibration of molecules in quartz minerals.  

 
Figure 3. Mid-infrared spectra of salt affected soil dataset 

3.2. Salt affected soil spectral dataset model performance 

The pursuit of an efficient model for estimating soil texture is a common topic in soil science research [15]. 

Tables 1, 2 and 3 represent the test set validation and calibration of the spectral-based soil texture. Overall, 

components of physical soil texture were predicted excellent with the highest accuracy using the testing sets. 

Generally, the good performance models for sand, clay and silt content may be attributed to the high spectral 

activity of these materials in the MIR region. 

3.2.1. Sand 

Amongst all soil texture in this study, especially, sand content showed the highest prediction accuracy at 

training and testing datasets (Table 1). The coefficient determination was 0.88, ratio performance to deviation 

was 2.92, while root mean square error was 8.42 at testing dataset (Table 1). The model parameters for the 

testing set represent the real performance of the models. The high coefficients determination of the sand 

content predictive models are attributed to fundamental vibrations of associated minerals in the MIR regions 

[14]. According to Mohanty  [37], the majority of the absorption peaks that are directly or indirectly related 

to SiO2 fall in the MIR region. Thus, the MIR spectra predicted sand or SiO2 with greater accuracy. 

Table 1. Results of the prediction models. 

 Training Dataset Testing Dataset 

Sand 

% 

Mean R2 RMSE RPD Mean R2 RMSE RPD 

26.59 0.96 4.3 5.33 29.05 0.88 8.42 2.92 
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3.2.2. Clay 

The testing datasets show that clay prediction accuracy is good but not as high as the sand component (Table 

2). Total clay content had R2 = 0.80, RMSE = 7.11 and RPD = 2.23 (Table 2). The high R2 of clay content 

predictive models are  attributed to specific strong absorption bands associated with chemical bonds [38] as 

well as fundamental vibrations of associated minerals in the MIR regions [14]. According to Urselmans [39], 

predicting clay content from MIR spectra was more direct because the absorption of the spectra was primarily 

concentrated in the mineral regions of the spectrum.  

Table 2. Results of the prediction models. 

 Training Dataset Testing Dataset 

Clay 

% 

Mean R2 RMSE RPD Mean R2 RMSE RPD 

34.35 0.92 4.30 3.56 31.52 0.80 7.11 2.23 

 

3.2.3. Silt 

The prediction accuracy for total silt of the training dataset was high with the coefficient determination of 

0.94 and ratio performance to deviation of 4.13 (Table 3). Whereas the root mean square error was 3.85. The 

prediction accuracy of testing set was good but slightly lower than the training set as well as sand content, 

but almost the same as clay content (Table 3). The total silt had (R2 = 0.80, RMSE = 6.38, RPD = 2.27).  The 

rather good silt prediction was surprising because it outperformed many previous findings, as reviewed by 

[14]. However, the achieved good results could be attributed to indirect effects on predicted silt. This 

assumption is supported by the strong negative correlation between conventionally measured silt and sand 

contents. 
  

Table 3. Results of the prediction models. 

 Training Dataset Testing Dataset 

Silt 

% 

Mean R2 RMSE RPD Mean R2 RMSE RPD 

39.05 0.94 3.85 4.13 40.03 0.80 6.38 2.27 

Generally, these results were similar to the findings by other researchers who achieved sand with R2 of 

0.94, silt with R2 of  0.84 and clay with R2 of 0.79 [40]. Thomas [41], showed good results in MIR-based 

predictions for clay with R2  =  0.88 and sand with R2  =  0.90 for soils from a Kenyan farm validation set as 

well as Madari [25] who obtained R2 of 0.99, 0.8 and 0.96 for the estimation of sand, silt and clay, 

respectively. Hati [42], obtained R2 of 0.79 for the sand and clay predictions, while an R2 of 0.73 for the silt 

prediction from Eastern India soils which are lower prediction accuracy than our results. Similarly, Pirie [43] 

were unable to achieve high accuracy with predictions: clay (R2 = 0.72), followed by sand (R2 = 0.62) and 

silt (R2 = 0.34).  

4. Conclusions 

The goal of this study is to predict sand, clay and silt from a salt-affected soil types dataset consisting of 100 

soil samples extracted from the Hungarian MIR spectral library, using PLSR statistical model.  

This study has demonstrated that MIR spectral libraries contain useful information related to soil texture and 

could be used as a cheap, fast and reliable alternative in the prediction of sand, clay and silt in salt-affected 

soil types in Hungary and elsewhere globally in soils with similar characteristics.  
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The PLSR model and technique outlined here can provide rapid predictions of physical soil texture in frame 

of these soil types. 
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